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ABSTRACT

We consider the problem of representing Markov chains on
smooth Riemannian manifolds by smooth maps, and show that
in the case where the manifold is an n-torus, any sufficiently
smooth Markov chain may be represented by a collection of ho-
motopic N-to-1 local diffeomorphisms for some N. We then go
on to consider which possible values of N can occur. For this, we
specialise to the circle, where we provide a necessary and suffi-
cient condition on N for the existence of a ‘nice’ representation
of the Markov chain by degree N maps. We use this to construct
maps which cannot be represented by degree N local homeomor-
phisms, and finally to construct an ezample of a Markov chain
which cannot be represented by homeomorphisms.

§1. INTRODUCTION AND STATEMENT OF RESULTS

Throughout this paper, by smooth, we will mean C*. The problem

which we consider is the problem of representing a Markov chain by smooth
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maps. This problem was originally raised in [1]. A Markov chain on a
measurable space (M, B) may be described by a map P : M x B — [0,1]
where P(z, A) is the probability of going from a point z to a point in the
measurable set A. The map P is then called the transition map of the
Markov chain.

Note that given a collection F of maps from the set M to itself and a
measure m on the collection F, we may create a Markov chain by setting
P(z,A) = m{f € F : f(z) € A} (ignoring for the time being problems of
measurablity). Representation is the reverse of this process. Given a Markov
chain M, with transition map P, a representation of M is a collection F
of maps and a probability measure m on them such that P(z, A) = m({f :
f(z) € A}). Note that for fixed z, the map A — P(z,A) is a probability
measure. We write P, for this map.

Definition. A smooth Markov chain on a smooth compact Riemannian
manifold is one whose transition map P is given by the equation P(z,A) =
J 4 h(z,y)dV (y) where V is the Riemannian volume measure and h : M x
M — (0,00) is a smooth map.

Note that in this definition, the transition densities are all taken to
be strictly positive. It would be possible to allow the densities to take the
value 0, but in that case, some of the results would fail.

In (3], the following Theorem was proved.

Theorem 1. Let M be a smooth, orientable, compact, connected Rie-
mannian manifold with Riemannian volume measure V. Then if M is a

smooth Markov chain on M, then M may be represented by a collection
of smooth maps on M.

Further we have that the collection F of maps may be smoothly

labelled by the points of the manifold, so as to satisfy the following:
() F = {f, :y € M)
(i1) The map (z,y) — f,(z) is smooth in = and y
(iit) For fixed = the map y — f,() is a diffeomorphism M — M
(iv) The measure m on F is equal to a volume form p on the labels

(That is m({fy : y € A}) = p(A)).
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This provides an affirmative answer to the question raised in [1] about
representing Markov chains on manifolds by smooth maps. In what follows,
we look at the specialised situation in which the manifold is an n-torus. In
this case, we can extend the above result to show that any smooth Markov
chain on an n-torus may be represented by a collection of homotopic N-
to-1 surjective local diffeomorphisms for some N. This is the result of §2.
In §3, we restrict attention to the circle and introduce two quantities &4
and §_ with §_ < 0 < é,, such that a smooth Markov chain on the circle
may be ‘nicely’ represented by degree N local diffeomorphisms if and only
if N > 6, or N < §_. We also show that if a Markov chain may be
represented by degree N local homeomorphisms, then N > §; or N < 6,
so since we can construct Markov chains with arbitrarily large values of 8,
we can construct Markov chains which may not be represented by degree
N maps for any positive N smaller than some Ny. This goes part of the
way to negatively answering another question from [1]: Can every smooth
Markov chain on a manifold be represented by homeomorphisms?

In §4, we explicitly construct a Markov chain which cannot be repre-
sented by homeomorphisms. That is an example of a Markov chain which
cannot be represented by a collection F of maps which consists partly of

degree 1 homeomorphisms and partly of degree —1 homeomorphisms.
§2. REPRESENTATION OF MARKOV CHAINS ON TORI

Theorem 2. Let M be a smooth Markov Chain on T" with transition
map P. Then M may be represented by a collection of homotopic N-to-1
local diffeomorphisms for some N.

Proof. By Theorem 1, there exists a smoothly parameterised collection
{fy}yern of maps with the property that for each pair z,z € T" , there
is exactly one y such that f,(z) = z. In this case, write y = ¢(z,z). For
fixed z, the map z — ¢(z, z) is a diffeomorphism of T™. We also have that
P(z,A) = pu{y : fy(z) € A} where there exists an zo € T™ such that for all
B € B, u(B) = P(z¢,B). As such, p is a smooth volume form on T", so by
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Moser’s Theorem ([2]), there exists a smooth diffeomorphism a : T® — T
such that u(B) = A(a™!B) for Borel sets B, where )\ is Haar measure.
Now define e,(2) = fa(y)(z). Then

P(z,4) = ply : fy(2) € 4} = Ma™'(y) : f,() € A}
Ay (e AN s ol Al

Note also that eq-1(4(z,2))(2) = fo(z,5)(z) = z, so the collection e,
has exactly the properties of the collection f, except that the measure on
the parameters is just Haar measure. We may therefore assume without
loss of generality that the original measure y was in fact Haar measure.

Next, write ¢.(z) = ¢(z,z). Then ¢, has lift &, : R® — R", say. As
usual, we write ®.(z) = A,z + P,(z) where A, is an integer matrix and P,
is periodic (that is P.(z + m) = P.(z) for m € Z".) Since the collection ¢.
is smoothly parameterised, it follows that the linear part A. is continuously
dependent on z, so since A, is an integer matrix, A, must be constant, say
A; = A

Fix a norm, ||-|| on R™. This induces the operator norm || || on M,(R)
satisfying ||Az|| < ||A]|||lz|. Consider T™ as [0,1)" mod 1, pick M € N
such that M > ||A|| + sup, .c1n ||D:P:| and set 6(z,z) = ¢(z,z) + M=.
For fixed z, the map z — 6(2,z) remains a diffeomorphism of T™. Set
gy(z) = 6.7 (y). Clearly g, () is continuously dependent on y for fixed =z,
and so the maps g, are certainly homotopic. Note also that

P(e,4) = My : fy(2) € A} = M(2,2) : = € 4}
= AMb(z,2) : 2 € A} = My : gy(z) € A},

so the collection {g,},eTn represents M. It therefore remains to show that
all the maps g, are N-to-1 surjections for some uniform N.

To prove this, consider g, *{z} = {z : 8,(z) = y}. Setting 7.(z) =
b(z,z), we see g, "' {z} = v.7'{y}, so it is sufficient to show that 7. is an
N-to-1 surjection for the some N which is independent of z. But 7.(z) =
&(z,z) + Mz, which has lift I'.(2) = Az + Mz + P.(2). Write L for the
matrix A + M1 where I is the identity matrix and suppose z # y. Then
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IT:(z) = T-()l| = |M(z — y) + A(z —y) + P=(2) = P:(y)I
> M|z —yll - (Al + sup. |1 D= P: )|z — yll > 0.

So I, is injective.

We now show T'. is surjective. Since ||A|| < M, we see that the matrix

L is invertible, so given y € R", define the map
F:R" > R" ;z— L7 (y — P:()).

The image of F is a bounded subset of R® and so is contained in some
closed ball B(0, R). Now consider F' as a map from B(0, R) into itself. By
the Brouwer fixed point theorem, there exists a point zo € B(0, R) such
that F(zo) = zo. Then 2o = L~!(y — P:(z0)), so we see that I':(z¢) = y.
It follows then that I', is surjective. We then show that this implies that
7: is a |detL|-to-1 surjection. Note that Z" is the disjoint union of cosets
LZI™ + 2;, 1 < i < m where m = |detL| by standard theory of maps on
tori. Denote by 7 the standard projection from R™ to T™ and pick ¢ € T™.
Then #~1(¢) = Z" + = for some z € R". Let p; = m(T':~!(z + z:)). These
are distinct, for if p; = p;, then

I."Y(z +z;) =T, (z + z;) + m, where m € Z".

Applying T'., we get z; = z; + Lm, which implies ¢ = j. This shows that
P1,---,pm are distinct as claimed and we have y71{¢} D {p1,.--,Pm}-

Conversely, suppose v:(p) = ¢, then pick w € 7~(p). So, (T:(w)) =
¢ and T'.(w) € Z*+z, soin particular T',(w) = Lm+z+z; for some m € Z"
and some 7. So

I.(w) = T.(m+T7(z +2:)).

From this, we deduce w = m + I'7!(z + z;) and p = p;. Then ¢ =
{p1,...,pm} and =, is |detL|-to-1 as required. This number is clearly inde-

pendent of z. OJ

Further, we may characterise the homotopy class of the maps as fol-
lows. By standard results on the theory of maps of the torus, the map 6 has
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alift © : R" xR™ — R™. The lift © may then, as usual, be split up into linear
and periodic parts: O(z, z) = A2+ Bz+C(z,2), where A and B are integer
matrices, and C is periodic in 2 and z (that is C(z +n,y+m) = C(z, ) for
all m and n). Note that |detB| = 1. We have, however, that g,(z) = 6;(y).
Let Gy(z) be the lift of g,. By definition, we see 8(z,g,(z)) = y. Lifting
this, we get O(z,Gy(2)) =Y, where Y is a preimage of y under the natural
projection. Substitution gives Az + BGy(z)+C(z,Gy(z)) =Y. As z varies,
the right hand side must remain a preimage of y, so by continuity, we have
that the right hand side is constant. As z moves through an integer displace-
ment m € Z", Az moves through Am and C(z,Gy(z)) remains constant
as C'is periodic. It therefore follows that BGy(z + m) = BG,(z) — Am, so
in particular
Gy(z + m) = Gy(z) — B~' Am.

The linear part of G, therefore has matrix —B~! A, where A is the

matrix of the linear part of § for fixed z (considered as a map of z) and B

is the corresponding matrix for fixed z.

§3. MARKOV CHAINS ON THE CIRCLE

Definition. A smooth Markov chain M on a smooth Riemannian man-
ifold M is said to be nicely represented by a collection {f,}yem of maps
and a volume form p on M if the following properties hold:
(i) For all points z and z in M, there exists a unique y in M such that
fy(z) = z. In this case, write y = Y (z, z).
(ii) Y(z,z) as defined above is smooth in both variables and for fixed z,
the map z — Y(z,z) is a diffeomorphism of M.
(iii) For each Borel set A and each point = € M, P(z,A) = u{y: fy(z) €
A}.

We now restrict ourselves to the case where M = S*.

Definition. The positive and negative degrees of M are given by

6 = /d:csup (%P(:c,[zo,z])

)
6_ = /d:cu:f B;P(:c, [0, 2]).
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Note that these degrees are independent of the point zo as

2 p(e,20,2) = 2 P(al20,4]) + 2 Ple:[50:2]):
Taking suprema over z, the first term of the right hand side is unaffected,
and then integrating, this term drops out altogether. It follows that the
degree &, is independent of the point zo. The same obviously holds for 6—.

We therefore fix a point zy € S? for the rest of this section.

Theorem 3. Let N > 0. Let M be a smooth Markov Chain on the circle.
M may be nicely represented by degree N local diffeomorphisms if and
onlyif N > §,4.

Theorem 4. Let N > 0. Suppose M is a smooth Markov chain on the
circle, which may be represented by degree N local homeomorphisms. Then
N>é,.

Corollary. Let N > 0. There exist smooth Markov chains on the circle
which cannot be represented by degree N local homeomorphisms.

Note that the above statements have corresponding versions for N <

0. These are as follows.

Theorem 3°. Let N < 0. Let M be a smooth Markov Chain on the
circle. M may be nicely represented by degree N local diffeomorphisms if
and only if N < §_.

Theorem 4°. Let N < 0. Suppose M is a smooth Markov chain on the
circle, which may be represented by degree N local homeomorphisms. Then
Nl

Corollary’. Let N < 0. There exist smooth Markov chains on the circle

which cannot be represented by degree N local homeomorphisms.

Proof of Theorem 3. Suppose M is nicely represented by degree N
local diffeomorphisms. We may then assume the measure on the parameter
space to be Haar measure as in §2. Write Y (z, z) or Y;(z) for the parameter
value of the unique map taking z into z and write h(z, z) for the probability

density of going from z to z. ¥, sends the image point of the map to its
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parameter value for fixed point z. It therefore follows that the density has
to be related to the map Y by |2 Y;| = h(z,2). We may however, without
loss of generality remove the moduli signs as these can only effect a change

of parametrization. We therefore have the relation
7]
-B—Y(:zr, z) = h(z, z).

In what follows, we treat the circle as the interval [0,1) mod 1. We then
see that Y(z,z) = P(z,[z0,2]) — X(2) where X is some map S' — S*.
For M to be represented by local diffeomorphisms, by the implicit function

theorem, we require
4 o d . —
X (@) > i ap(’?»[zo,z]) or ——X(z) < ,’élsfl 'a—IP(I,[Zo,Z])-

To ensure that the maps of the representation are orientation-preserving,
we require the former condition to hold. We therefore see that X has degree

greater than §4. But we have

N =|{z:Y(z,2) =y}| = {z : P(,[20,2]) — X(z) = y}|.

By the requirements placed on X, we have that the expression P(z, [20, z])—
X(z) is monotonic in z. It follows that the cardinality in question is just

the degree of the expression, but this is just the degree of X, so we see that
N > 6.

Conversely, suppose N > §. Set

9
a(z) = sgp %P(I’ [0, 2])-

Then we have [a(z)dz = §4, so we can find an € > 0 and a smooth
function f(z) such that

(i) B(z) > a(z) + ¢
Uﬂ/ﬂﬂh:N.
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Then set X(z) = f:o B(z)dz and finally, let Y(z,z) = n(P(z,[20,2]) —
X(z)), where 7 is the standard projection of the real line onto the circle.
For fixed z € S, the map z — Y(z,z2) is a diffecomorphism S' — S'. Y
is also smooth in z. Write Yy(z) = Y(z,z) and define fy(z) = Y;'(y).
By the implicit function theorem, we have D, f, = —D.Y/D.Y, so since
D.Y < 0and D.Y > 0, we have D, f, > 0. The map f, is a smooth local
diffeomorphism and

Uz ={z: fy(e) = 2} = {z 1y = Y2(3)}-

From this, we see that f, is N-to-1 and so f, has degree N. Finally, we
check that with p taken to be Haar measure, this does indeed provide a

nice representation of the Markov chain M.
wly: fy(z) € A} = p{y: Y, ' (y) € A} = u{Yz(2) : 2 € A}
= p{P(z, [20,2]) : 2 € A} = P(z, A).

Note that we are using the translation invariance of Haar measure for the
third equality. The Markov chain M is therefore nicely represented by de-
gree N local diffeomorphisms. O

Before embarking on the proof of Theorem 4, we need some lemmas

and definitions.

Definition. A mapp:S! x B — [0,1] is an §-map if
(i) For each x € S, the map A — p(z, A) is a measure,
(ii) p(z,S?!) is independent of z and

(iii) For fixed A € B, the map = + p(z, A) is measurable.

Note that an S-map is just a constant multiple of a transition map.

Further, if p; and p, are S-maps, then we say p; is subordinate to p2
if p1(z, A) < pa(z, A) for each z € S* and A € B.

The weight of an S-map p is denoted by w(p) and is defined to be
p(z,SY) (which is independent of x).

Definition. Suppose the Markov chain M is represented by the collection
of maps F and a measure v on them. A subrepresentation of this is defined
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by a measurable subset F' of F and the restriction of the measure v to a

measure ' defined on F'.

Note that in this case the induced S-map (defined by p(z, A) = v'{f €
F': f(z) € A}) is subordinate to P.

Let  be the collection of all S-maps. Then define the map

V:Z—>RY p— lim sup Z[p (L), [20,2]) — p(7 (=), [zo,z,])]
Lemma 1. Let p be a smooth S-map. Then we have

[ sup (e o, Dtz = Vo) 1)

Proof. Set A(z,z) = p(z,[20, 2]). This is smooth in z and z. Write A; for
-%A. Then

w(i/m)

p(r(L), [20,2i]) — p(x (L), [20, 2]) = / dx%p(x, (20, 2i])

w(i—1/m)

L7 deoup Zoptesleo, )
< z sup —p(2,|20,2])-

x(i—1/m) : Oz

From this, we see

sup Z[p(w( £, [20,2:]) — p(7r(' =1y [zo,z.])] S/drsgp éa;p(:c,[zo,z]).

z 2 .
1. m =1

This shows the right hand side of (1) is bounded above by the left hand
side.

Now we show they are equal. Pick ¢ > 0. By uniform continuity, there
exists a § > 0 such that |z; — 2| < § = Vz, |Az(z1,2) — AR 2 i<c
Now pick m € N such that m > §! and choose i with 1 < ¢ < m. Then
let y € ST be such that A,(:=1,y) = sup, A;(:5},2). Then

z € = A (z,y) > A.(L,y) — e

m’m)

Also,
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ze [ i) = Ay(z,z) < A 1 2)+e< A (SLy)+e Vz

m’m

It follows that A,(z,y) > sup, A;(z,z) — 2¢. Integrating between m(=L)
and (L), we get

- ~ g 9
A(#’y) = ‘4(17_,,133/) Z [—1 dT [Sllp —a—;p(x, [zo,z]) - 26].

Finally, adding gives

1[50l o) =l o] >

0
/dr sup 5p(1r, [20,2]) — 2

This completes the proof of the lemma. [J

Lemma 2. Suppose p is a smooth S-map arising from some measure v
on some collection F of degree N orientation-preserving local homeomor-

phisms (possibly with v(F) # 1), then V(p) < Nw(p).
Proof.

V(p)= lim  sup Z[p(w( ), (20, i) — P(r(5L), [z0, %]

.z
m =1

= tim swp [ dV(f)Z[X[zo,z. (FE) = Xtz (P

m oo oz
< tim_ [ av£) Y 0B [ttt () = Xt (FC5D)]
i=1 -
where y 4 is the characteristic function of the set A. But we have

Sup [X[zo z.](f( m)) X[Zo,zi](f(i;_l'))]

1=1

=|{i:1 <i<m, 2 Sf(',::)<f(i—7l)}]-

where by inequalities on the circle, we mean that there is a continuous

choice of argument on a connected subset of the circle including the specified
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points on which the order of the values of the argument is that specified.
The cardinality above is however bounded above by N as there can be at
most one such ¢ between any adjacent pair of preimages of zp under f. It
therefore follows that V(p) < Nv(F) = Nw(p). O

Theorem 4 then follows as a straightforward application of the Lem-
mas.

Proof of Theorem 4. Applying Lemmas 1 and 2 to the transition map P
of the Markov chain, we see §+ = V(P) < Nw(P). But, we also have that
w(P) =1, so the Theorem is proved. OJ

Proof of the Corollary. To prove the corollary, it is sufficient to construct
a Markov chain with §4 > N. As an example of such a Markov chain,
consider the following;:

Considering the circle as the interval [0,1) mod 1, and given positive

constants a and 3, such that « < 1 and 8 < %, pick a smooth function f

such that
(@) f(z) >0, Vz € S?

(ii)/f(x)dz =1
1/2+8
(uz)/ f(z)dz = a

(iv) fa) = T for = ¢ (3 = .3 + B).

Next, set h(z,z) = f(z + r:::), where r € N, and using this, define P to
be the transition map with probability density h: For a Borel set A and a
point z € S', P(z, A) is defined to be [, h(z,z)dz. This clearly defines a
smooth Markov chain.

We then estimate the value of sup, & P(z, [20, 2]) as follows:

a z+rz
—P(l‘ [20,2]) = / h(z,y)dy = 5 ' s f(y)dy
= (f(~ +rz) — f(z0 +rz))
Note that defining ((z) = 1 — rz, |20 — C(x)l > B = h(z,z0) = 11:2‘;3,

Clearly, however, we have sup, h(z,z) > ﬂ, so we have
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) Lz
|20 — ¢ (r)|>ﬂ=>5“P8—P(‘”v[2°’z]) >r(‘7/3 1—20;)'

We also have, however, that sup, EP(I’ [20,2]) > 0. But |z — {(z)| = B

on a set of measure 1 — 2/3, so we deduce

l1-a
54 >1( ﬂ 1__)/3)(1—2ﬂ)=r(—ﬂ—1)
Then taking a = 1, # = 3 and r = N, we get 64 > N. This proves
the corollary. [J

§4. A MARKOV CHAIN WHICH CANNOT BE
REPRESENTED BY HOMEOMORPHISMS

The above shows that there exist Markov chains which cannot be
represented by orientation-preserving homeomorphisms. It remains an in-
teresting question to ask if there are Markov chains which cannot be repre-
sented by a combination of orientation-preserving and orientation-reversing
homeomorphisms. Such Markov chains do in fact exist, and we will modify

the above example to show this.

Theorem 5. There exists a smooth Markov chain on the circle which

cannot be represented by homeomorphisms.

Proof. The strategy of the proof will be to construct a Markov chain with
transition map P and to show that there can be no S-map induced by a
collection of degree 1 homeomorphisms of weight 3 which is subordinate
to P and the same thing for degree —1 homeomorphisms. This will then
complete the proof of the Theorem as, if the result did not hold, there
would be a representation of the Markov chain which would be composed
of degree 1 and —1 homeomorphisms. In particular, the measure of one of
these subsets would have to be at least 3, and taking the S-map induced
by a subrepresentation of this would contradict the above.

In the course of the proof, we will take A to be Haar measure on the
circle. The Markov chain which we will use is that which we constructed

in the Corollary above. The parameters a, 3 and r are to be determined.
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Write P for the transition map of this Markov chain. Let {(z) be given by
e

Suppose then that F is a collection of orientation-preserving home-
omorphisms and v4 is a measure on them such that v (Fy) = % and such
that the induced S-map is subordinate to P. We perform two estimates:
First, fix f € 4 and consider the set {z : |f(z) — {(z)| < B}. The function
f(z) — ¢(z) is monotonic of degree r + 1, so the set above has r +1 compo-
nents. Take a lift G of the function f(z) — ((z) and suppose G(y) =n —
where n € N. Then G(y + %fi) > n + 3, so the measure of each component

of the set is less than Zré, so we get

Mz :15() = @) > 81) > 1= 2 +1),

By construction of P however, we have P(z, S*\[((z)—3,((z)+8]) = 1—a,
so in order for the induced S-map to be subordinate to P, we must also

have

vi({f € Fy 1 If(2) = ¢(2)| > B}) S 1—a.

Integrating these inequalities with respect to f and z respectively and ap-

plying Fubini’s theorem, we see that for consistency, we are forced to have
1 23
1-—a>3(1- = +1)).
a>3 . (r+1)

Instead of this, suppose we have a collection F_ of orientation-re-
versing homeomorphisms and that v_ is a measure on them such that
v—(F-) = 1 and such that the induced S-map is subordinate to P. Then,

as before, we have

v-({feF-:|f(z)=¢(z)| >B}) <1-a.

We will also require an estimate of the measure of the set {z : |f(z)—((z)| >
B} for fixed f € F_. This time, f(z) — ((z) has degree r — 1, but we can

no longer say that the function is monotonic. We consider a lift G of the
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function f(z) — ((z). As we noted above, this has degree r — 1. Then pick
a point y such that G(y) = % +Bandforl <i<r—1set

<r=mmzeww+1rcw)=l+a—n+ﬂ}
=inf{z € [ai,y+1): G(z) = 3 +i— B}

Note that G(y + 1) = 1 + B + (r — 1), so that each of the above exists. We
have also however that 1r(a,,b,) C {z : |f(z)—C(z)| > B}, but bi—a; > 1522
as G(a;) =1 + B+ (i—1) and G(a; + 0) < G(a;) + ro. So since the sets

n(a;, b;) are disjoint, we get

M2~ o)l PV = 1E=S

Integrating and using Fubini’s theorem as before, we find that we require

for consistency that
1-28

r

l—a>3(r-1)

We may then choose a, 8 and r, so taking r = 2,3 = % and a > %, we find
that neither of the above inequalities is satisfied, and so we have a smooth

Markov chain which cannot be represented by homeomorphisms. [J

ACKNOWLEDGEMENTS

For the period during which this research was done, I was supported

by an SERC studentship.
I would like to thank Peter Walters for the encouragement he has

offered in the preparation of this paper, and also for his help in improving
the proofs in §2.

REFERENCES

1. Kifer, Y., Ergodic Theory of Random Transformations, Birkhauser,
Boston, 1986.

2. Moser, J., On the volume elements on a manifold, Trans. Amer. Math.
Soc. 120(1965), 286-294.



276 QUAS

3. Quas, A.N., On representations of Markov chains by random smooth
maps, Bull. London Math. Soc. 23(1991), 487-492.



